183 research outputs found

    Towards a Molecular Understanding of Actin Bundle Stability and Mechanics

    Get PDF

    Conformational Dynamics of Supramolecular Protein Assemblies in the EMDB

    Get PDF
    The Electron Microscopy Data Bank (EMDB) is a rapidly growing repository for the dissemination of structural data from single-particle reconstructions of supramolecular protein assemblies including motors, chaperones, cytoskeletal assemblies, and viral capsids. While the static structure of these assemblies provides essential insight into their biological function, their conformational dynamics and mechanics provide additional important information regarding the mechanism of their biological function. Here, we present an unsupervised computational framework to analyze and store for public access the conformational dynamics of supramolecular protein assemblies deposited in the EMDB. Conformational dynamics are analyzed using normal mode analysis in the finite element framework, which is used to compute equilibrium thermal fluctuations, cross-correlations in molecular motions, and strain energy distributions for 452 of the 681 entries stored in the EMDB at present. Results for the viral capsid of hepatitis B, ribosome-bound termination factor RF2, and GroEL are presented in detail and validated with all-atom based models. The conformational dynamics of protein assemblies in the EMDB may be useful in the interpretation of their biological function, as well as in the classification and refinement of EM-based structures.Comment: Associated online data bank available at: http://lcbb.mit.edu/~em-nmdb

    Inverse Monte Carlo simulation of biomolecular conformation and coarse-grained molecular modeling of chondroitin sulfate conformation, titration, and osmotic pressure

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2004.Includes bibliographical references.The first part of this thesis is concerned with the solution structure determination problem. Whereas many biomacromolecules, such as proteins, can be adequately characterized by a single conformation in solution, numerous other important molecules (e.g., nucleic acids, carbohydrates, and polypeptides) exhibit conformational isomerism and disorder. For these molecules, the term "structure" does not correspond to a single conformation but rather to an ensemble of conformations. Given a molecular model and experimental data, the goal of the structure determination problem is to solve for an ensemble of conformations that is consistent with the data. Traditional computational procedures such as simulated annealing, however, are not guaranteed to generate a unique ensemble. The computed ensemble is often simply dependent on the user-specific protocol employed to generate it. As an alternative, a numerical method for determining the conformational structure of macromolecules is developed and applied to idealized biomacromolecules in solution. The procedure generates unique, maximum entropy conformational ensembles that reproduce thermodynamic properties of the macromolecule (mean energy and heat capacity) in addition to the target experimental data. As an evaluation of its utility in structure determination, the method is applied to a homopolymer and a heteropolymer model of a three-helix bundle protein. It is demonstrated that the procedure performs successfully at various thermodynamic state points, including the ordered globule, disordered globule, and random coil states. In the second part of this thesis, a molecular model is developed and used to investigate the properties of anionic glycosaminoglycan (GAG) molecules. GAGs are critically important to the structure and biomechanical properties of articular cartilage, an avascular tissue that provides a low-friction, protective lining to the ends of contacting bones during join locomotion.(cont.) The tissue consists predominantly of two types of macromolecules, collagen and aggrecan. Aggrecan consists of a linear protein backbone with a high mass fraction of covalently attached chondroitin sulfate (CS) GAGs, which endow cartilage with its high compressive modulus via osmotic action. During the onset and progression of osteoarthritis, a debilitating joint disease that affects millions in the US alone, the chemical composition of CS (sulfate type, sulfate pattern, and molecular weight) changes, concomitantly with alterations in the biomechanical properties of cartilage. For this reason, it is of primary biological interest to understand the effects of CS chemical composition on its conformation, titration behavior, and osmotic pressure. To enable the investigation of these properties, a coarse-grained model of CS is developed. Systematically derived from an all-atom description, the model enables the atomistic- based simulation of large-scale macromolecular assemblies relevant to cartilage biomechanics. Extensive comparison with experimental data demonstrates that this computationally efficient model is also quantitatively predictive, despite the absence of any adjustable parameters. 4-sulfation of CS is found to significantly increase the intrinsic stiffness of CS, as measured by the characteristic ratio and persistence length in the limit of high ionic strength. Average sulfate density is found to increase CS stiffness at finite ionic strength due to electrostatic interactions that tend to stiffen the chain backbone. Sulfation type and pattern (the statistical distribution of sulfates along a CS chain) are not found to influence the osmotic pressure, which is found to be sensitive primarily to the mean volumetric fixed charge density.by Mark Bathe.Ph.D

    Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures

    Get PDF
    DNA nanotechnology enables the programmed synthesis of intricate nanometer-scale structures for diverse applications in materials and biological science. Precise control over the 3D solution shape and mechanical flexibility of target designs is important to achieve desired functionality. Because experimental validation of designed nanostructures is time-consuming and cost-intensive, predictive physical models of nanostructure shape and flexibility have the capacity to enhance dramatically the design process. Here, we significantly extend and experimentally validate a computational modeling framework for DNA origami previously presented as CanDo [Castro,C.E., Kilchherr,F., Kim,D.-N., Shiao,E.L., Wauer,T., Wortmann,P., Bathe,M., Dietz,H. (2011) A primer to scaffolded DNA origami. Nat. Meth., 8, 221–229.]. 3D solution shape and flexibility are predicted from basepair connectivity maps now accounting for nicks in the DNA double helix, entropic elasticity of single-stranded DNA, and distant crossovers required to model wireframe structures, in addition to previous modeling (Castro,C.E., et al.) that accounted only for the canonical twist, bend and stretch stiffness of double-helical DNA domains. Systematic experimental validation of nanostructure flexibility mediated by internal crossover density probed using a 32-helix DNA bundle demonstrates for the first time that our model not only predicts the 3D solution shape of complex DNA nanostructures but also their mechanical flexibility. Thus, our model represents an important advance in the quantitative understanding of DNA-based nanostructure shape and flexibility, and we anticipate that this model will increase significantly the number and variety of synthetic nanostructures designed using nucleic acids.MIT Faculty Start-up Fun

    Chromatin Architecture Reconstruction

    Get PDF

    Lattice-free prediction of three-dimensional structure of programmed DNA assemblies

    Get PDF
    DNA can be programmed to self-assemble into high molecular weight 3D assemblies with precise nanometer-scale structural features. Although numerous sequence design strategies exist to realize these assemblies in solution, there is currently no computational framework to predict their 3D structures on the basis of programmed underlying multi-way junction topologies constrained by DNA duplexes. Here, we introduce such an approach and apply it to assemblies designed using the canonical immobile four-way junction. The procedure is used to predict the 3D structure of high molecular weight planar and spherical ring-like origami objects, a tile-based sheet-like ribbon, and a 3D crystalline tensegrity motif, in quantitative agreement with experiments. Our framework provides a new approach to predict programmed nucleic acid 3D structure on the basis of prescribed secondary structure motifs, with possible application to the design of such assemblies for use in biomolecular and materials science.United States. Office of Naval Research (ONR N000141210621)National Science Foundation (U.S.) (NSF-DMREF Program CMMI1334109

    Autonomously designed free-form 2D DNA origami

    Get PDF
    Scaffolded DNA origami offers the unique ability to organize molecules in nearly arbitrary spatial patterns at the nanometer scale, with wireframe designs further enabling complex 2D and 3D geometries with irregular boundaries and internal structures. The sequence design of the DNA staple strands needed to fold the long scaffold strand to the target geometry is typically performed manually, limiting the broad application of this materials design paradigm. Here, we present a fully autonomous procedure to design all DNA staple sequences needed to fold any free-form 2D scaffolded DNA origami wireframe object. Our algorithm uses wireframe edges consisting of two parallel DNA duplexes and enables the full autonomy of scaffold routing and staple sequence design with arbitrary network edge lengths and vertex angles. The application of our procedure to geometries with both regular and irregular external boundaries and variable internal structures demonstrates its broad utility for nanoscale materials science and nanotechnology.National Science Foundation (U.S.) (Grant CCF-1564025)National Science Foundation (U.S.) (Grant CMMI-1334109)Office of Naval Research (Grant N000141210621

    Casting inorganic structures with DNA molds

    Get PDF
    We report a general strategy for designing and synthesizing inorganic nanostructures with arbitrarily prescribed three-dimensional shapes. Computationally designed DNA strands self-assemble into a stiff “nanomold” that contains a user-specified three-dimensional cavity and encloses a nucleating gold “seed.” Under mild conditions, this seed grows into a larger cast structure that fills and thus replicates the cavity. We synthesized a variety of nanoparticles with 3-nanometer resolution: three distinct silver cuboids with three independently tunable dimensions, silver and gold nanoparticles with diverse cross sections, and composite structures with homo- and heterogeneous components. The designer equilateral silver triangular and spherical nanoparticles exhibited plasmonic properties consistent with electromagnetism-based simulations. Our framework is generalizable to more complex geometries and diverse inorganic materials, offering a range of applications in biosensing, photonics, and nanoelectronics.United States. Air Force Office of Scientific Research. Defense University Research Instrumentation Program (Grant N000141310664)United States. Air Force Office of Scientific Research. Defense University Research Instrumentation Program (Grant N000141210621)National Science Foundation (U.S.). Designing Materials to Revolutionize and Engineer our Future Program (Grant CMMI1334109
    corecore